Upload files to "/"

This commit is contained in:
lasse 2025-04-01 08:49:02 +00:00
commit bcbde2ff9c
4 changed files with 225 additions and 0 deletions

92
README.md Normal file
View File

@ -0,0 +1,92 @@
# Import_promato_from_excel
## Getting started
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
## Add your files
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
```
cd existing_repo
git remote add origin https://gitlab.ppidev.net/lawi/import_promato_from_excel.git
git branch -M master
git push -uf origin master
```
## Integrate with your tools
- [ ] [Set up project integrations](https://gitlab.ppidev.net/lawi/import_promato_from_excel/-/settings/integrations)
## Collaborate with your team
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
- [ ] [Automatically merge when pipeline succeeds](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
## Test and Deploy
Use the built-in continuous integration in GitLab.
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
***
# Editing this README
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template.
## Suggestions for a good README
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
## Name
Choose a self-explaining name for your project.
## Description
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
## Badges
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
## Visuals
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
## Installation
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
## Usage
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
## Support
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
## Roadmap
If you have ideas for releases in the future, it is a good idea to list them in the README.
## Contributing
State if you are open to contributions and what your requirements are for accepting them.
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
## Authors and acknowledgment
Show your appreciation to those who have contributed to the project.
## License
For open source projects, say how it is licensed.
## Project status
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.

29
Untitled-1.php Normal file
View File

@ -0,0 +1,29 @@
<?php
// See the password_hash() example to see where this came from.
//$bcrypt-sha256$v=2,t=2b,r=12$GSESZguIOkfLQom0VDQTae$OtF.jWHaZLjgkfe/MvQbhHujHg6w8qG
$org = 'FooBar2023';
$hash = 'OtF.jWHaZLjgkfe/MvQbhHujHg6w8qG';
// '12$VHOXJuFmSdf6FUyU7Ce34e$iufdzMTOyg.PapK8DQAauBMQfekpzXO'
//$hash = '$2y$07$BCryptRequires22Chrcte/VlQH0piJtjXl.0t1XkA8pw9dMXTpOq';
$newhash = '$2y$12$T3RGLmpXSGFaTGpna2ZlL012UWJoSHVqSGc2dzhxRw==';
$opt = ['cost' => 12];
$raw_hash = hash("sha256", $hash, true);
echo $raw_hash; echo "\r\n";
$b64_hash = base64_encode($hash);
echo $b64_hash; echo "\r\n";
echo password_hash($org, PASSWORD_BCRYPT, $opt);
echo "\r\n";
if (password_verify($org, $newhash)) {
echo 'Password is valid!';
} else {
echo 'Invalid password.';
}
?>

3
requirements.txt Normal file
View File

@ -0,0 +1,3 @@
pandas==1.5.3
XlsxWriter==3.0.8
openpyxl==3.1.1

101
zeiterfassung.py Normal file
View File

@ -0,0 +1,101 @@
import pandas as pd
from datetime import datetime
import xlsxwriter
fileLocation = '/Users/lawi/Nextcloud/PPI/Zeiterfassung_2023.xlsx'
year = 2023
#month = 7
week = 33
# constants for Excel calculation and format
firstDate = datetime(1899, 12, 30)
totalSeconds = 86400
dateFormat='dd.mm.yyyy'
timeFormat='hh:mm'
# Read Excel files, time columns as string
erfassung = pd.read_excel(fileLocation, sheet_name='Erfassung', dtype={'Beginn': str, 'Ende': str})
projekte = pd.read_excel(fileLocation, sheet_name='Projekte')
# add week numbers
erfassung['Woche'] = erfassung['Datum'].dt.isocalendar().week
# Filter input data on specified year and month
erfassung = erfassung[erfassung['Datum'].dt.year == year]
#erfassung = erfassung[erfassung['Datum'].dt.month == month]
erfassung = erfassung[erfassung['Woche'] == week]
erfassung = erfassung[erfassung['Projekt'] != 'Pause']
# Delte rows where no start or end time is given
erfassung.dropna(subset=['Beginn', 'Ende'], inplace=True)
# transform time values (HH:MM:SS) to seconds for calculation
erfassung['Beginn'] = erfassung['Beginn'].str.split(':').apply(lambda x: int(x[0])*3600 + int(x[1])*60 + int(x[2]))
erfassung['Ende'] = erfassung['Ende'].str.split(':').apply(lambda x: int(x[0])*3600 + int(x[1])*60 + int(x[2]))
erfassung['Dauer'] = erfassung['Ende']-erfassung['Beginn']
projekte = projekte[['Projekt - Art', 'Projekt-PSP-ID', 'PSP-ID', 'Leistungsart']]
# Start time per day
promato = pd.DataFrame(erfassung.groupby(['Datum'])['Beginn'].min())
# End time per day
promato = promato.join(pd.DataFrame(erfassung.groupby(['Datum'])['Ende'].max()))
# total time per day incl breaks
promato = promato.join(pd.DataFrame(erfassung.groupby(['Datum'])['Dauer'].sum()))
# calculate break time per day
promato['Pause'] = promato['Ende'] - promato['Beginn'] - promato['Dauer']
promato = promato[['Beginn', 'Ende', 'Pause']]
# dummy column for "Abwesenheit"
promato['Abwesenheit'] = ''
# time per project (PSP-ID + Leistungsart) per day
promato = promato.merge(pd.DataFrame(erfassung.groupby(['Datum', 'Projekt'], as_index=False)['Dauer'].sum()), how='left', left_on='Datum', right_on='Datum')
# join project information to time data
promato = promato.merge(projekte, left_on='Projekt', right_on='Projekt - Art', how='left')
# join comments from excel to time data (one comment per day, PSP-ID and Leistungsart)
promato = promato.merge(pd.DataFrame(erfassung.groupby(['Datum', 'Projekt'], as_index=False)['Kommentar'].apply(lambda x: ', '.join(set(x.dropna().astype(str))))),
on=['Datum', 'Projekt'], how='left')
promato.rename(columns={'Beginn': 'Von', 'Ende': 'Bis', 'Dauer': 'Zeit'}, inplace=True)
promato = promato[['Datum', 'Von', 'Bis', 'Pause', 'Abwesenheit', 'Projekt-PSP-ID', 'PSP-ID', 'Leistungsart', 'Zeit', 'Kommentar']]
# date and time columns to strings
#promato['Datum'] = promato['Datum'].dt.strftime('%d.%m.%Y')
#promato['Von'] = pd.to_datetime(promato['Von'], unit='s').dt.strftime('%H:%M:%S')
#promato['Bis'] = pd.to_datetime(promato['Bis'], unit='s').dt.strftime('%H:%M:%S')
#promato['Pause'] = pd.to_datetime(promato['Pause'], unit='s').dt.strftime('%H:%M:%S')
#promato['Zeit'] = pd.to_datetime(promato['Zeit'], unit='s').dt.strftime('%H:%M:%S')
# date and time columns to date / time
#promato['Datum'] = promato['Datum'].dt.date
#promato['Von'] = pd.to_datetime(promato['Von'], unit='s').dt.time
#promato['Bis'] = pd.to_datetime(promato['Bis'], unit='s').dt.time
#promato['Pause'] = pd.to_datetime(promato['Pause'], unit='s').dt.time
#promato['Zeit'] = pd.to_datetime(promato['Zeit'], unit='s').dt.time
# transfrom to excel date / time format
promato['Datum'] = (promato['Datum'] - firstDate).dt.days
promato['Von'] = promato['Von'] / totalSeconds
promato['Bis'] = promato['Bis'] / totalSeconds
promato['Pause'] = promato['Pause'] / totalSeconds
promato['Zeit'] = promato['Zeit'] / totalSeconds
#promato.to_excel('/Users/lawi/Nextcloud/PPI/Promato_Upload_'+str(year)+'_'+str('0'+str(month))[-2:]+'.xlsx', sheet_name='Import', index=False)
#with xlsxwriter.Workbook('/Users/lawi/Nextcloud/PPI/Promato_Upload_'+str(year)+'_'+str('0'+str(month))[-2:]+'.xlsx') as workbook:
with xlsxwriter.Workbook('/Users/lawi/Nextcloud/PPI/Promato_Upload_'+str(year)+'_W'+str('0'+str(week))[-2:]+'.xlsx') as workbook:
worksheet = workbook.add_worksheet('Import')
for i in range(promato.shape[1]):
# write column header
worksheet.write(0, i, promato.columns[i])
# set formating for Excel
if(promato.columns[i] in ['Von', 'Bis', 'Pause', 'Zeit']):
excelFormat = workbook.add_format({'num_format': timeFormat})
elif(promato.columns[i] in ['Datum']):
excelFormat = workbook.add_format({'num_format': dateFormat})
else:
excelFormat = workbook.add_format({'num_format': '@'})
for j in range(promato.shape[0]):
# write dataframe data
worksheet.write(j+1, i, promato.iloc[j,i], excelFormat)