2025-04-18 22:38:44 +02:00
2025-04-18 22:38:44 +02:00
2025-04-18 22:38:44 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00
2025-04-18 22:34:10 +02:00

Working Time Analysis

This project analyzes working time data from a CSV file by:

  1. Importing the data into a DuckDB database
  2. Transforming the data for analysis
  3. Generating reports based on the data

Setup

Dependencies

Install the required dependencies:

pip install -r requirements.txt

Usage

1. Import Data

Run the import script to load the CSV data into DuckDB:

python3 import_data.py

This will:

  • Create a DuckDB database file working_times.db
  • Import the CSV data into a table
  • Add an import timestamp to each record

2. Transform Data

Run the transformation script to create analytical views:

python3 transform_data.py

This will:

  • Create summary tables with aggregated data
  • Convert hours to days (using 8 hours = 1 day conversion)
  • Add transformation timestamps

3. Analyze Data

Run the analysis script to generate reports:

python3 analyze_data.py

This will produce:

  • Overall time summary
  • Top projects by hours
  • Busiest days
  • Day distribution analysis
  • Project-activity combinations

Data Structure

The analysis uses the following tables:

  • working_times: Raw imported data
  • working_times_summary: Per-day, per-project aggregation
  • project_summary: Total time per project
  • daily_summary: Total time per day

Each derived table includes timestamps for data lineage tracking.

Description
No description provided
Readme 55 KiB
Languages
Python 100%